Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

نویسندگان

  • Cibele Pinto
  • Dan Papa
  • Melanie Hübner
  • Tung-Chung Mou
  • Gerald H Lushington
  • Roland Seifert
چکیده

Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اندازه‌گیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ

 Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn.  Adenylyl cyclase activity in the pres...

متن کامل

Conversion of forskolin-insensitive to forskolin-sensitive (mouse-type IX) adenylyl cyclase.

Forskolin potently activates all cloned mammalian adenylyl cyclases except type IX by interacting with two homologous cytoplasmic domains (C1 and C2) that form the catalytic core. A mutational analysis of the IIC2 protein (C2 domain from type II adenylyl cyclase) and forskolin analogs suggests that Ser942 interacts with the 7-acetyl group of forskolin. The C1/C2 complex has only one forskolin, ...

متن کامل

Activating mutation of adenylyl cyclase reverses its inhibition by G proteins.

We have implemented a yeast genetic selection developed previously by our laboratory to identify mutant mammalian type V adenylyl cyclases insensitive to inhibition by G(ialpha.) One mutation isolated was localized to the first cytoplasmic domain at a Phe residue (position 400), which is conserved in all nine isoforms of membrane-bound mammalian adenylyl cyclase. Biochemical characterization of...

متن کامل

Protective effect of forskolin on diabetes induced nephrophaty via antioxidant activity

The present study aimed to investigate the role of adenylyl cyclase activator in preventing diabetic nephropathy via antioxidant activity in rats. Biochemical parameters were performed to confirm Streptozotocin induced nephropathy in rats. Male Wistar rats were used in the present study to reduce the effect of estrogen. Rats were subjected to high fat diet (HFD) for two weeks followed by low do...

متن کامل

The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6.

An increase in the free intracellular calcium concentration promotes exocytosis in most secretory cells. In contrast, renin release from juxtaglomerular (JG) cells is suppressed by calcium. The further downstream signaling cascades of this so called "calcium paradoxon" of renin secretion have been incompletely defined. Because cAMP is the main intracellular stimulator of renin release, we hypot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 325 1  شماره 

صفحات  -

تاریخ انتشار 2008